

THERMAL RADIATION AND CONVECTIVE HEATING ON HYDROMAGNETIC BOUNDARY LAYER FLOW OF NANOFLUID PAST A PERMEABLE STRETCHING SURFACE

Ajala O.¹, Adegbite P², Abimbade S. F³ & Obalalu A. M⁴

^{1,2}Research Scholar, Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

^{3,4}Research Scholar, Department of Statistics and Mathematical Sciences, Kwara State University, Malete, Kwara, Nigeria

ABSTRACT

This research work studies the hydromagnetic boundary layer flow of Nanofluid past a permeable stretching surface with the introduction of both thermal radiation and Newtonian heating. The Nanoparticles considered here are Copper (Cu) and Alumina (Al_2O_3) while water served as the base fluid. The derived dimensionless governing equations for this investigation are solved using a set of codes on the MAPLE software. The effects of significant physical parameters on velocity, temperature, skin friction and Nusselt number profiles within the boundary layer of the two water-based Nanofluids are investigated with interpretations from the graphs.

KEYWORDS: Boundary Layer, Thermal Radiation, Nanofluid, Stretching Surface

Article History

Received: 17 Jul 2018 | Revised: 06 Mar 2019 | Accepted: 31 Mar 2019